Urban Akuakultur
Kata Kunci:
Urban AkuakulturAbstrak
Di tengah denyut nadi perkotaan yang kian padat, di antara gedung-gedung pencakar langit dan hiruk pikuk kendaraan, sebuah revolusi senyap tengah bertumbuh. Inilah urban akuakultur, sebuah inovasi yang membawa budidaya ikan ke jantung kota. Bukan lagi sekadar hobi, urban akuakultur menjelma menjadi solusi cerdas untuk ketahanan pangan lokal, pemanfaatan ruang terbatas, dan gaya hidup yang lebih berkelanjutan. Buku ini hadir sebagai panduan komprehensif bagi siapa saja yang tertarik untuk menyelami dunia urban akuakultur. Baik seorang pemula yang penasaran, penghobi yang ingin mengembangkan sistem, maupun penggiat lingkungan yang mencari solusi inovatif, halaman-halaman berikut akan mengantarkan pada pemahaman mendalam tentang konsep, teknik, dan praktik terbaik dalam budidaya di lingkungan perkotaan. Melalui buku ini juga akan diajak menjelajahi berbagai sistem akuakultur yang adaptif untuk ruang terbatas, mulai dari sistem resirkulasi yang efisien hingga akuaponik yang simbiosis; mempelajari seluk-beluk pemilihan spesies yang tepat, pengelolaan nutrisi dan kualitas air, hingga pemanenan hasil yang memuaskan. Selain itu juga buku ini juga menyoroti manfaat sosial, ekonomi, dan lingkungan yang ditawarkan oleh urban akuakultur, menjadikannya bukan hanya sekadar kegiatan produktif, tetapi juga kontribusi nyata bagi masa depan kota yang lebih hijau dan mandiri. Perjalanan urban akuakultur adalah perjalanan inovasi dan adaptasi. Kami berharap buku ini dapat menjadi peta jalan Anda, menginspirasi Anda untuk berkreasi dan berkontribusi dalam menghadirkan sumber pangan segar dan berkelanjutan di tengah gemerlap kota. Selamat menjelajahi potensi tak terbatas dari urban akuakultur!
Referensi
Ali, M. L., & Islam, M. S. (2017). "Adaptability of Pangasius to urban aquaculture systems." Aquaculture, 469: 50-55.
Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems Agron. Sustain. Dev. 2015, 35, 869–89
Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological approaches to sustainable agriculture at a crossroads: An agroecological perspective. Sustainability 2017, 9, 349
Anderson, D. M. (2009). "Approaches to Monitoring Harmful Algal Blooms". Oceanography, 22(3), 24-31.
Asche, F., Roll, K. H., & Tveteras, S. (2018). "Economic Incentives and Regulation in Norwegian Aquaculture". Aquaculture Economics & Management, 22(1), 1-21.
Asiri, F., & Chu, K. H. (2020). A novel recirculating aquaculture system for sustainable aquaculture: Enabling wastewater reuse and conversion of waste-to-immune-stimulating fish feed. ACS Sustain. Chem. Eng, 8, 18094–18105.
Asiri, F.; Chu, K.-H. A novel recirculating aquaculture system for sustainable aquaculture: Enabling wastewater reuse and conversion of waste-to-immune-stimulating fish feed. ACS Sustain. Chem. Eng. 2020, 8, 18094–18105
Aubin, J.; Callier, M.; Rey-Valette, H.; Mathé, S.; Wilfart, A.; Legendre, M.; Slembrouck, J.; Caruso, D.; Chia, E.; Masson, G.; et al. Implementing ecological intensification in fish farming: Definition and principles from contrasting experiences. Rev. Aquac. 2019, 11, 149–167
Austin B. and Austin D. A. 1999. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish,Heriot-Watt University, Edinburgh, UK
Austin, B., & Austin, D. A. (2016). Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Springer.
Avnimelech, Y. (2015). Biofloc Technology: A Practical Guidebook. The World Aquaculture Society.
Azhari, D., & Tomasoa, A. M. (2018). Kajian kualitas air dan pertumbuhan ikan nila (Oreochromis niloticus) yang dibudidayakan dengan sistem akuaponik. Jurnal Akuatika Indonesia, 3(2), 84-90
Azhari, D., Balansa, W., Mahare, F., & Tomasoa, A. M. (2018b). IbM pemanfaatan lahan pekarangan untuk usaha budidaya ikan dan tanaman dengan system akuaponik di Kelurahan Manente, Kecamatan Tahuna. Jurnal Ilmiah Tatengkorang, 2, 14-16
Azhari, D., Mose, N., & Tomasoa, A. M. (2018a). Kajian kualitas air (suhu, DO, pH, amonia, nitrat) pada sistem akuaponik untuk budidaya ikan nila (Oreochromis niloticus). Jurnal Ilmiah Tindalung, 4(1), 23-26
Babatunde, A., Deborah, R. A., Gan, M., & Simon, T. (2023). Economic viability of a small scale low-cost aquaponic system in South Africa. Journal of Applied Aquaculture, 35(2), 285–304
Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) Analysis: Main Issues on Management and Future Challenges. Aquacultural Engineering, 51, 26-35.
Barrett, L.T.; Oveton, K.; Stien, L.H.; Oppedal, F.; Dempster, T. Effect of cleaner fish on sea lice in Norwegian salmon aquaculture: A national scale data analysis. Int. J. Parasitol. 2020, 50, 787–796
Barrington, K.; Chopin, T.; Robinson, S. Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. Integr. Maric. A Glob. Rev. 2009
Beckers, S. (2019). Aquaponics: a positive impact circular economy approach to feeding cities. Field Actions Science Reports - The Journal of Field Actions. http://journals.openedition.org/factsreports/5757.
Belton, B., Bush, S. R., & Little, D. C. (2018). Not just for the wealthy: Rethinking farmed fish consumption in the Global South. Global Food Security, 16, 85-92. https://doi.org/10.1016/j.gfs.2017.10.005
Benjamin, E. O., Ola, O., & Buchenrieder, G. R. (2022). Feasibility study of a small-scale recirculating aquaculture system for sustainable (peri-) urban farming in Sub-Saharan Africa: A Nigerian perspective. Land, 11, 2063
Bergman, K., Henriksson, P. J. G., Hornborg, S., Troell, M., Borthwick, L., Jonell, M., Philis, G., & Ziegler, F. (2020). Recirculating aquaculture is possible without major energy tradeoff: Life cycle assessment of warmwater fish farming in sweden. Environ. Sci. Technol, 54, 16062–16070
Bergman, K.; Henriksson, P.J.G.; Hornborg, S.; Troell, M.; Borthwick, L.; Jonell, M.; Philis, G.; Ziegler, F. Recirculating aquaculture is possible without major energy tradeoff: Life cycle assessment of warmwater fish farming in sweden. Environ. Sci. Technol. 2020, 54, 16062–1607
Bernardet, J. F., & Bowman, J. P. (2006). The genus Flavobacterium. In The Prokaryotes: A Handbook on the Biology of Bacteria: Volume 7: Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria. Edited by Dworkin M, Falkow S. New York: Springer Science+Business Media, LLC. p.481–531.
Bolivar, G.; Fitzsimmons, K. New dimensions in farmed tilapia. In Proceedings of the 6th International Symposium on Tilapia in Aquaculture (ISTA), Manila, Philippines, 12–16 September 2004
Borremans, B.; Faust, C.; Manlove, K.R.; Sokolow, S.H.; Lloyd-Smith, J.O. Cross-species pathogen spillover across ecosystem boundaries: Mechanisms and theory. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180344
Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., & Corner, R. (2010). Aquaculture: Global Status and Trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2897-2912.
Boyd, C. E. (2008). Pond bottom soil analyses. Global Aquaculture Advocate. US. 92P.
Boyd, C. E. (2015). Water Quality: An Introduction. Springer International Publishing.
Boyd, C. E. (2019). Water Quality: An Introduction. Springer.
Boyd, C. E. (2020). Water Quality Management for Pond Fish Culture. Elsevier.
Boyd, C. E., & McNevin, A. A. (2015). Aquaculture, Resource Use, and the Environment. Wiley-Blackwell.
Boyd, C. E., & Tucker, C. S. (2012). Pond Aquaculture Water Quality Management. Springer.
Boyd, C. E., Lois, R. D., Glencross, B. D., et al. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633. https://doi.org/10.1111/jwas.12714.
Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso Jr, J.R.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633
Brooker, A.J.; Papadopoulou, A.; Gutierrez, C.; Rey, S.; Davie, A.; Migaud, H. Sustainable production and use of cleaner fish for the biological control of sea lice: Recent advances and current challenges. Vet. Rec. 2018, 183, 383
Buaruang, J., & Rattanaroj, P. (2012). Cultivation of Litopenaeus vannamei in closed systems: Environmental and management aspects. Aquaculture Engineering, 47, 10-18.
Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165
Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the art and challenges for offshore integrated multi-trophic aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165
Budiatma, A. (2020). Pemanfaatan Tepung Ikan Rucah Terfermentasi Dalam Formula Pakan Terhadap Pertumbuhan Ikan Sidat (Anguilla sp.). Tesis. Universitas Brawijaya.
Bunting, S. W. (2012). Principles of Sustainable Aquaculture: Promoting Social, Economic, and Environmental Resilience. Routledge.
Bunting, S. W. (2013). Principles of Sustainable Aquaculture: Promoting Social, Economic and Environmental Resilience. Earthscan.
Bush, S. R., Belton, B., Hall, D., et al. (2013). Certify Sustainable Aquaculture? Science, 341(6150), 1067-1068.
Buting, S., & Little, D. C. (2003). Urban Aquaculture. Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland.
Calado, R.; Mota, V.C.; Madeira, D.; Leal, M.C. Summer is coming! tackling ocean warming in atlantic salmon cage farming. Animals 2021, 11, 1800
Carrera, M.; Piñeiro, C.; Martinez, I. Proteomic Strategies to Evaluate the Impact of Farming Conditions on Food Quality and Safety in Aquaculture Products. Foods 2020, 9, 1050
Centers for Disease Control and Prevention (CDC). (2021). Nutrition and Health. Retrieved from https://www.cdc.gov/nutrition/index.html
Cheng, Y.; Wu, X.; Yang, X.; Hines, A.H. Current trends in hatchery techniques and stock enhancement for chinese mitten crab, Eriocheir japonica sinensis. Rev. Fish. Sci. 2008, 16, 377–38
Chopin, T. Aquaculture, Integrated multi-trophic (imta)aquacultureintegrated multi-trophic (IMTA). In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A., Eds.; Springer: New York, NY, USA, 2013
Chung-Do, J. J., Hwang, P. W., Ho-Lastimosa, I., Rogerson, I., Ho, K., Jr., DeMello, K., Kauahikaua, D., & Ahn, H. J. (2024). MALAMA: Cultivating food sovereignty through backyard aquaponics with native Hawaiian families. Genealogy, 8(3), 101
City of Montreal. (2018). Guidelines for Urban Aquaculture. Retrieved from https://www.montreal.ca
Clark, M.R.; Althaus, F.; Schlacher, T.A.; Williams, A.; Bowden, D.A.; Rowden, A.A. The impacts of deep-sea fisheries on benthic communities: A review. ICES J. Mar. Sci. 2015, 73, i51–i69
Colt, J. (2012). Water Quality in Aquaculture Systems. Academic Press.
Corrêa, B. R. S., & Navarro, R. D. (2023a). Tropical Aquaponic production of medicinal plants in association with goldfish. Fronteira: Journal of Social, Technological and Environmental Science, 12(1), 40–55
Corrêa, C., & Navarro, P. (2023b). The potential use of biopesticides in aquaponics systems. Journal of Aquaponics and Sustainable Agriculture, 11(4), 345–356
Correia, M.; Azevedo, I.C.; Peres, H.; Magalhães, R.; Oliva-Teles, A.; Almeida, C.M.R.; Guimarães, L. Integrated multi-trophic aquaculture: A laboratory and hands-on experimental activity to promote environmental sustainability awareness and value of aquaculture products. Front. Mar. Sci. 2020, 7, 156
Costa-Pierce, B. The ‘Blue revolution’—Aquaculture must go green. World Aquac. 2002, 33, 4–5
Costa-Pierce, B., Desbonnet, A., & Edwards, P. (2005). Urban Aquaculture. ISBN: 978-0-85199-829-9.
Costa-Pierce, B.A. (2002). Ecological Aquaculture: The Evolution of the Blue Revolution. Blackwell Science.
Couture, J.L.; Froehlich, H.E.; Buck, B.H.; Jeffery, K.R.; Krause, G.; Morris Jr, J.A.; Pérez, M.; Stentiford, G.D.; Vehviläinen, H.; Halpern, B.S. Scenario analysis can guide aquaculture planning to meet sustainable future production goals. ICES J. Mar. Sci. 2021, 78, 821–83
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Nitrogen Removal Techniques in Aquaculture for a Sustainable Production. Aquaculture, 306(1-4), 1-14.
Dannheim, J.; Bergström, L.; Birchenough, S.N.R.; Brzana, R.; Boon, A.R.; Coolen, J.W.P.; Dauvin, J.-C.; De Mesel, I.; Derweduwen, J.; Gill, A.B.; et al. Benthic effects of offshore renewables: Identification of knowledge gaps and urgently needed research. ICES J.Mar. Sci. 2019, 77, 1092–1108
Dastvan, B., Pate, J., Dole, J., Precht, T., & Hall, P. (2022). Growing dahlias, Dahlia coccinea Cav., for commercial cut flower production in aquaponics and AutoPots. Journal of Floriculture and Landscaping, 8, 1–7
De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The Basics of Bio-Flocs Technology: The Added Value for Aquaculture. Aquaculture, 277(3-4), 125-137.
De Silva, S. S., & Soto, D. (2020). Climate change and aquaculture: Impacts, adaptation, and mitigation. FAO Fisheries and Aquaculture Technical Paper, 620.
De Silva, S. S., & Turchini, G. M. (2008). Nutritional strategies to enhance production of Pangasius species in aquaculture systems. Aquaculture Research, 39(2), 107-113.
Dodds, W. K. (2002). Freshwater Ecology: Concepts and Environmental Applications. Academic Press.
Dos Santos, M. J. P. L. (2016). Smart cities and urban areas—Aquaponics as innovative urban agriculture. Urban Forestry & Urban Greening, 20, 402–406
Douglass, J.G.; Duffy, J.E.; Bruno, J.F. Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community. Ecol. Lett. 2008, 11, 598–608
Dumont, B.; Fortun-Lamothe, L.; Jouven, M.; Thomas, M.; Tichit, M. Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 2013, 7, 1028–104
Durborow, R. M., Thune, R. L., Hawke, J. P., & Camus, A. C. (1998). Columnaris disease: A bacterial infection caused by Flavobacterium columnare. Publication 479, Aquaculture Center, Stoneville, Mich, USA.
Eck, M., Sare, A., Massart, S., Schmautz, Z., Junge, R., Smits, T., & Jijakli, M. (2019). Exploring bacterial communities in Aquaponic systems. Water, 11, 1–16. https://doi.org/10.3390/W11020260
Edwards, P. (2015). Aquaculture Environment Interactions: Past, Present and Likely Future Trends. Aquaculture, 447, 2-14.
Edwards, P. (2015). Aquaculture Environment Interactions: Past, Present, and Likely Future Trends. Journal of Marine Science and Engineering, 3(1), 1-23.
Ekasari, J., Crab, R., Verstraete, W., & Bossier, P. (2014). The Nutritional Contribution of Bioflocs in Cultured African Catfish Clarias gariepinus. Aquaculture Research, 46(3), 509-518.
Emerenciano, M., Ballester, E. L. C., Cavalli, R. O., & Wasielesky, W. (2017). Biofloc Technology Application as a Food Source in a Limited Water Exchange Super-Intensive System for Pacific White Shrimp. Aquaculture Research, 48(8), 3992-4000.
Environmental Protection Agency (EPA). (2020). Inventory of U.S. Greenhouse Gas Emissions and Sinks. Retrieved from https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
European Commission. (2019). Water Framework Directive 2000/60/EC.
FAO. (2018). The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals.
FAO. (2018). The state of world fisheries and aquaculture. FAO Fisheries and Aquaculture Department.
FAO. (2020). The State of World Fisheries and Aquaculture 2020. Rome: Food and Agriculture Organization of the United Nations.
FAO. (2020). The State of World Fisheries and Aquaculture 2020: Sustainability in Action. FAO.
FAO. (2021). Guidelines for Sustainable Urban Aquaculture Development. Food and Agriculture Organization of the United Nations.
Fauzi, M. A., & Salim, A. (2014). Pengembangan Ikan Bandeng dalam Budidaya Akuakultur Berkelanjutan di Daerah Pesisir. Jurnal Ekonomi Perikanan, 25(2), 112-120. DOI: 10.1016/j.ecopers.2014.01.003
Food and Agriculture Organization. (2022). The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation. FAO. https://doi.org/10.4060/cc0461en.
Food and Agriculture Organization. (2024). The State of Food Security and Nutrition in the World 2024–Financing to End Hunger, Food Insecurity and Malnutrition in All Its Forms. Rome: FAO. doi: 10.4060/cd1254en.
Furuya, W. M., Pezzato, L. E., Barros, M. M., & Furuya, V. R. B. (2015). Nutrient Management in Japanese Aquaculture: Reducing Environmental Impact. Aquaculture Research, 46(3), 509-518.
Fusco, V., Oguntoyinbo, F. A., & Franz, C. M. A. P. (2017). Fermentation to Improve Food Security in Africa and Asia. Soft Chemistry and Food Fermentation, 337-338. http://dx.doi.org/10.1016/B978-0-12-811412-4.00012-6
Gallo, N., Natali, M. L., Quarta, A., Gaballo, A., Terzi, A., Sibillano, T., …., & Salvatore, L. (2022). Aquaponics-derived tilapia skin collagen for biomaterials development. Polymers, 14(9), 1865
Garcia-Pérez, A.; Alston, D.E.; Cortés-Maldonado, R. Growth, survival, yield, and size distributions of freshwater prawn Macrobrachium rosenbergii and Tilapia Oreochromis niloticus in polyculture and monoculture systems in Puerto Rico. J. World Aquac. Soc. 2000, 31, 446–451
Garlock, T.; Asche, F.; Anderson, J.; Bjørndal, T.; Kumar, G.; Lorenzen, K.; Ropicki, A.; Smith, M.D.; Tveterås, R. A global blue revolution: Aquaculture growth across regions, species, and countries. Rev. Fish. Sci. Aquac. 2020, 28, 107–116
Garnett, T. (2014). What is a Sustainable Diet? Retrieved from https://www.foodsource.org.uk
Garnida, Y. (2023). Aquaponics as a solution for family food security in urban areas. Jurnal Multidisiplin Sahombu, 3(1), 146–152
Ginting, D. S., Yusnafi, & Nurmatias. (2014). Efektivitas Ekstrak Beberapa Tanaman Herbal terhadap Infeksi Ektoparasit pada Ikan Nila (Oreochromis niloticus). Fakultas Pertanian, Universitas Sumatra.
Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of Sustainable and Commercial Aquaponics. Sustainability, 7(4), 4199-4224.
Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (2019a). Aquaponics food production systems: Combined aquaculture and hydroponic production technologies for the future (p. 619). Springer Nature
Goddek, S., Joyce, A., Wuertz, S., Körner, O., Bläser, I., Reuter, M., & Keesman, K. J. (2019b). Decoupled aquaponics systems. Aquaponics Food Production Systems, 10, 973–978
Gómez-Gutiérrez, A. R., & González-Gallego, J. (2010). Nutritional Value and Consumption of Freshwater Fish Species in Aquaculture. Food Research International, 43(1), 10-15.
Greenfeld, A., Becker, N., Bornman, J. F., Spatari, S., & Angel, D. L. (2021). Monetizing environmental impact of integrated aquaponic farming compared to separate systems. Science of the Total Environment, 792, 148459
Greenfeld, A., Becker, N., McIlwain, J., Fotedar, R., & Bornman, J. F. (2019). Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Reviews in Aquaculture, 11(3), 848–862
Growing Power. (2020). Urban Agriculture Training. Retrieved from https://growingpower.org
Guragain, P.; Tkachov, M.; Båtnes, A.S.; Olsen, Y.; Winge, P.; Bones, A.M. Principles and methods of counteracting harmful salmon–arthropod interactions in salmon farming: Addressing possibilities, limitations, and future options. Front. Mar. Sci. 2021, 8, 70179
Hadadi, A. (2002). Pengaruh kadar karbohidrat pakan berbeda terhadap pertumbuhan dan efisiensi pakan ikan gurame (Osphronemus gouramy L.) ukuran 70-80 g. Tesis. Universitas Pertanian Bogor.
Hadi, S., & Purwanto, A. (2020). "Pengembangan Akuakultur Ikan Lele di Kota untuk Meningkatkan Ketahanan Pangan." Jurnal Sumber Daya Alam dan Lingkungan, 35(1), 45-55.
Hall, T. E., & Amberg, S. M. (2013). "Factors influencing consumption of farmed seafood in the Pacific Northwest." Appetite, 66, 1-9. doi: 10.1016/j.appet.2013.02.012.
Hallegraeff, G. M. (2003). "Harmful Algal Blooms in Aquaculture and Fisheries." Journal of Phycology, 39(3), 375-392.
Hargreaves, J. A. (2013). "Biofloc Production Systems for Aquaculture." Southern Regional Aquaculture Center, 4503, 1-12.
Higuera, M. D., Akharbach, H., Hidalgo, M. C., Peragon, J., Lupianez, J. A., & Gallego, M. G. (1999). "Liver and white muscle protein turnover rates in the European eel (Anguilla anguilla): effects of dietary protein quality." Aquaculture, 179, 203-216.
Hossain, M. A. (2020). "Urban aquaculture: A sustainable approach to urban food security." Sustainable Cities and Society, 53, 101946.
Hu, L.; Zhang, J.; Ren, W.; Guo, L.; Cheng, Y.; Li, J.; Li, K.; Zhu, Z.; Zhang, J.; Luo, S.; et al. Can the co-cultivation of rice and fish help sustain rice production? Sci. Rep. 2016, 6, 28728
Humphries, F.; Benzie, J.; Morrison, C. A systematic quantitative literature review of aquaculture genetic resource access and benefit sharing. Rev. Aquac. 2018, 11, 1133–1147
Huntingford, F. Animal Welfare in Aquaculture. Aquac. Innov. Soc. Transform. 2009, 17, 21–33
Institute for Agriculture and Trade Policy. (2019). Local Food Systems: A Global Perspective. Retrieved from https://www.iatp.org
Jeney, Z., & Jeney, G. (1995). "Recent achievements in studies on diseases of Common carp (Cyprinus carpio)." Aquaculture, 129(1-4), 397-420.
Jennings, S., Stentiford, G. D., Leocadio, A. M., Jeffery, K. R., Metcalfe, J. D., Katsiadaki, I., et al. (2016). "Aquatic food security: insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment." Fish and Fisheries, 17, 893–938. doi: 10.1111/faf.12152.
Jennings, S.; Stentiford, G.D.; Leocadio, A.M.; Jeffery, K.R.; Metcalfe, J.D.; Katsiadaki, I.; Auchterlonie, N.A.; Mangi, S.C.; Pinnegar, J.K.; Ellis, T.; et al. Aquatic food security: Insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish Fish. 2016, 17, 893–938
Joyce, A., Goddek, S., Kotzen, B., & Wuertz, S. (2019). Aquaponics: Closing the cycle on limited water, land and nutrient resources. Aquaponics Food Production Systems, 19, 19–34
Ju, Z. Y., Forster, I., Conquest, L., Dominy, W., Kuo, W. C., & Horgen, F. D. (2008). "Determination of Microbial Community Structures of Shrimp Floc Cultures by Biomarkers and Analysis of Floc Amino Acid Profiles." Aquaculture Research, 39(2), 118-133.
Kauffman, J. (2019). "The economic impact of urban aquaculture." Aquaculture Economics & Management, 23(4), 383-401.
Khairyah, U., Kusdarwati, R., & Kismiati. (2015). "Identifikasi dan Revalensi Jamur pada Ikan Gurami (Osphronemus gouramy) di Desa Ngrajek, Kecamatan Mungkid, Kabupaten Magelang, Jawa Tengah." FPIK. UNAIR: Surabaya.
Khaw, H. L., & Soon, S. P. (2004). "Growth and production of common carp in integrated aquaculture systems." Aquaculture Research, 35(6), 553-560.
Kim, Dae-Young., Shinde, S. K., Kadam, A. A., Saratale, R. G., Saratale, G. D., Kumar, M., Syed, A., Bahkali, A. H., Ghodake, G. S. (2022). Advantage of species diversification to facilitate sustainable development of aquaculture sector. Biology, 11, 509
KLHK. (2016). Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia No. P.68 Tahun 2016 tentang Baku Mutu Air Limbah.
Klinger, D., & Naylor, R. L. (2012). "Searching for Sustainability in Aquaculture: A Global Evaluation." Environmental Research Letters, 7(4), 041011. doi: 10.1088/1748-9326/7/4/041011.
Knaus, U., Appelbaum, S., & Palm, H. W. (2018). Significant factors affecting the economic sustainability of closed backyard aquaponics systems. Part IV: Autumn herbs and polyponics. Aquaculture, Aquarium, Conservation & Legislation, 11(6), 1760–1775
Kozłowski, M.; Szczepkowski, M.; Wunderlich, K.; Szczepkowska, B.; Piotrowska, I. Polyculture of juvenile pikeperch (Sander lucioperca (L.)) and sterlet (Acipenser ruthenus L.) in a recirculating system. Fish. Aquat. Life 2015, 22, 237–242
Krastanova, M., Sirakov, I., Ivanova-Kirilova, S., Yarkov, D., & Orozova, P. (2022). Aquaponic systems: Biological and technological parameters. Biotechnology & Biotechnological Equipment, 36, 305–316. https://doi.org/10.1080/13102818.2022.2074892
Krustasari, Y., Putro, P. P., & Hadi, A. P. (2021). "Pemanfaatan Bioflok dalam Budidaya Ikan Lele sebagai Upaya Efisiensi Produksi." Jurnal Akuakultur Indonesia, 20(1), 55-63.
Kumar, A., & Sharma, B. (2019). "Impact of Pesticides on Aquatic Life." Environmental Toxicology and Chemistry, 38(5), 1075-1083.
Kurniawan, D., Suryana, D., & Ezraneti, R. (2012). "Pengendalian Saprolegnia sp. pada Ikan Nila (Oreochromis niloticus) dengan Salinitas Air yang Berbeda." FMIPA. Universitas Sumatra Utara.
Lafferty, K. D., & Kuris, A. M. (2016). "Parasitic Diseases in Aquaculture". Annual Review of Marine Science, 8, 223–244.
Leclercq, E.; Davie, A.; Migaud, H. Delousing efficiency of farmed ballan wrasse (Labrus bergylta) against Lepeophtheirus salmonis infecting Atlantic salmon (Salmo salar) post-smolts. Pest Manag. Sci. 2014, 70, 1274–1282
Lennard, W. A., & Leonard, B. V. (2004). A comparison of reciprocating flow versus constant flow in an integrated, gravel bed, aquaponic test system. Aquaculture International, 12, 539–553
Lennard, W., & Goddek, S. (2019). Aquaponics: The basics. In Aquaponics food production systems (pp. 113–143). Springer
Liao, I. C., & Chao, N. H. (2009). Sustainable Aquaculture Practices. Wiley-Blackwell.
Lightner, D. V. (2012). "Biosecurity in Aquaculture". Aquaculture Research, 43(3), 292–298.
Lilley, J. H., Callinan, R. B., Chinabut, S., Kanchanakhan, S., MacRae, I. H., & Phillips, M. J. (1998). Epizootic Ulcerative Syndrome (EUS) Technical Handbook. Aquatic Animal Health Research Institute. Bangkok, Thailand.
Lobillo-Eguíbar, J., Fernández-Cabanás, V. M., Bermejo, L. A., & Pérez-Urrestarazu, L. (2020). Economic sustainability of small-scale aquaponic systems for food self-production. Agronomy, 10(10), 1468
Lucas, J. S., Southgate, P. C., & Tucker, C. S. (Eds). (2018). Aquaculture. Wiley-Blackwell. (Page 76–79, Module Handbook).
Mamatha, D., Verma, A. K., Tiwari, V. K., Chandrakant, M. H., Nayak, S. K., & Javed, H. (2020). Biointegration of Rohu (Labeo rohita) Fry and lemon grass (Cymbopogon citratus) in a recirculating Aquaponic system. Journal of the Indian Society of Coastal Agricultural Research, 38(2), 132–139
Martínez-Porchas, M.; Martínez-Córdova, L.R.; Porchas-Cornejo, M.A.; López-Elías, J.A. Shrimp polyculture: A potentially profitable, sustainable, but uncommon aquacultural practice. Rev. Aquac. 2010, 2, 73–85
Martins, C. I. M., Eding, E. H., Verdegem, M. C. J., Heinsbroek, L. T. N., Schneider, O., Blancheton, J. P., d’Orbcastel, E. R., & Verreth, J. A. J. (2010). "New Developments in Recirculating Aquaculture Systems in Europe: A Perspective on Environmental Sustainability". Aquacultural Engineering, 43(3), 83–93. https://doi.org/10.1016/j.aquaeng.2010.09.002
Maucieri, C., Nicoletto, C., Van Os, E., Anseeuw, D., Van Havermaet, R., & Junge, R. (2019). Hydroponic technologies. Aquaponics Food Production Systems, 10, 973–978
McIntosh, D.; Fitzsimmons, K. Characterization of effluent from an inland, low-salinity shrimp farm: What contribution could this water make if used for irrigation. Aquac. Eng. 2003, 27, 147–156
Medeiros, M.V.; Aubin, J.; Camargo, A.F.M. Life cycle assessment of fish and prawn production: Comparison of monoculture and polyculture freshwater systems in Brazil. J. Clean. Prod. 2017, 156, 528–53
Metian, M.; Troell, M.; Christensen, V.; Steenbeek, J.; Pouil, S. Mapping diversity of species in global aquaculture. Rev. Aquac. 2020, 12, 1090–1100
Moldovan, I. A., & Bala, M. (2016). Research results regarding flower development in Petunia hybrida grandiflora'red'in organic aquaponics on floating shelves
Mungkung, R., Gheewala, S. H., & Bonnet, S. (2013). "Aquaculture System Sustainability: A Comparative Life Cycle Assessment Approach". Journal of Cleaner Production, 45, 111–121.
Munthali, M. G., Chilora, L., Nyirenda, Z., Salonga, D., Wineman, A., & Muyanga, M. (2022). Economic Viability of Small-Scale Aquaculture in Malawi. Policy Brief No. 20.
Nair, C. S., Manoharan, R., Nishanth, D., Subramanian, R., Neumann, E., & Jaleel, A. (2025). Recent advancements in aquaponics with spesial emphasis on its sustainability. Journal of the World Aquaculture Society, 56(1), e13116
Nawir, F., Utomo, N. B. P., & Budiardi, T. (2015). "Pertumbuhan ikan sidat yang diberi kadar protein dan rasio energi protein pakan berbeda." Jurnal Akuakultur Indonesia, 14(2), 128–134.
Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubzens, E., Shumway, S. E., & Troell, M. (2021). "A 20-Year Retrospective Review of Global Aquaculture". Nature, 591(7851), 551–563.
Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591, 551–563
Naylor, R.L.; Williams, S.L.; Strong, D.R. Aquaculture-a gateway for exotic species. Science 2001, 294, 1655–1656
Nguyen, T. H., Lazard, J., & Verdegem, M. (2015). "Feed conversion efficiency in Pangasius farming systems." Aquaculture Nutrition, 21(5), 757–765.
Nicholls, C.; Altieri, M. Agroecology: Principles for the conversion and redesign of farming systems. J. Ecosyst. Ecography 2016, 1, 1–8
Nichols, M. A., & Savidov, N. A. (2012). Aquaponics: A nutrient and water efficient production system. In Aquaponics: A nutrient and water efficient production system (pp. 129–132). International Society for Horticultural Science (ISHS)
Nunes, A. L. S., Sá, M. V. C., Browdy, C. L., & Vazquez-Anon, M. (2017). "Growth performance and feed conversion efficiency of Litopenaeus vannamei under controlled systems." Aquaculture International, 25(4), 1165–1173.
Ortuño Crespo, G.; Dunn, D.C. A review of the impacts of fisheries on open-ocean ecosystems. ICES J. Mar. Sci. 2017, 74, 2283–2297
Osmundsen, T.C., Amundsen, V.S., Alexander, K.A., Asche, F., Bailey, J., Finstad, B., Olsen, M.S., Hernández, K., & Salgado, H. (2020). "The operationalisation of sustainability: Sustainable aquaculture production as defined by certification schemes." Global Environmental Change, 60, 102025. https://doi.org/10.1016/j.gloenvcha.2019.102025.
Ottinger, M., Clauss, K., & Kuenzer, C. (2016). "Aquaculture: Relevance, Distribution, Impacts and Spatial Assessments – A Review." Ocean & Coastal Management, 119, 244–266.
Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., Jijakli, M. H., & Kotzen, B. (2018). "Towards Commercial Aquaponics: A Review of Systems, Designs, Scales and Nomenclature." Aquaculture International, 26(3), 813–842.
Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., & Kotzen, B. (2018). Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquaculture International, 26, 813–842
Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., & Kotzen, B. (2018). Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquaculture International, 26, 813–842
Pantanella, E. (2013). Advances in Freshwater Aquaponic Research. International Aquaponics Conference: Aquaponics and Global Food Security. Lecture conducted from University of Wisconsin Stevens Point
Pantanella, E., Danaher, J., Rakocy, J., Shultz, R., & Bailey, D. (2011). Alternative media types for seedling production of lettuce and basil. Acta Horticulturae, 891, 257–264
Pascoe, S.D.; Plagányi, É.E.; Dichmont, C.M. Modelling multiple management objectives in fisheries: Australian experiences. ICES J. Mar. Sci. 2016, 74, 464–474
Petropoulos, S. A., Chatzieustratiou, E., Constantopoulou, E., & Kapotis, G. (2016). Yield and quality of lettuce and rocket grown in floating culture system. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 603–612
Pineda-Pineda, J., Miranda-Velázquez, I., Ramírez-Arias, J. A., Rivera-Del Rio, R., Vargas-Hernández, M., Roldán-Guzmán, V., & García-Jaimes, A. (2018). Culture of lily (Lilium sp.) ‘Table Dance’ in an aquaponic system. Acta Horticulturae, 1227, 355–364
Pinho, S. M., Lima, J. P., David, L. H., Emerenciano, G. C., Goddek, S., Verdegem, M. C. J., Keesman, K. J., & Portella, M. C. (2021). FLOCponics: The integration of biofloc technology with plant production. Reviews in Aquaculture, 14(2), 647–675 https://doi.org/10.1111/raq.12617
Pollard, G., Ward, J., & Koth, B. (2017). "Aquaponics in Urban Agriculture: Social Acceptance and Urban Food Planning." Horticulturae, 3(3), 39.
Ponzoni, R. W., et al. (2007). "Growth performance and genetic improvement of fish species in aquaculture systems." Aquaculture, 267(1-4), 60-73.
Post, G. (1987). Textbook of Fish Health. United States of America: TFH Publication. 288 hal.
Rahman, M. Role of common carp (Cyprinus carpio) in aquaculture production systems. Front. Life Sci. 2015, 8, 399–410
Rahman, M.M.; Verdegem, M.C.J.; Nagelkerke, L.A.J.; Wahab, M.A.; Milstein, A.; Verreth, J.A.J. Growth, production and food preference of rohu Labeo rohita (H.) in monoculture and in polyculture with common carp Cyprinus carpio (L.) under fed and non-fed ponds. Aquaculture 2006, 257, 359–372
Rakocy, J. E. (1994). Aquaponics: The integration of fish and vegetable culture in recirculating systems
Rakocy, J. E. (2012). Aquaponics: Integrated Fish and Plant Production (5th ed.). Wiley-Blackwell.
Rakocy, J. E. (2016). Aquaponics: Integrating Fish and Plant Production. Retrieved from https://www.researchgate.net
Rakocy, J. E., Bailey, D. S., Shultz, R. C., & Danaher, J. J. (2006). "Evaluation of an Integrated Aquaponic System for the Production of Tilapia and Basil." Acta Horticulturae, 701, 53–59.
Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2012). Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture. Southern Regional Aquaculture Center, 454.
Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2016). Recirculating aquaculture tank production systems: Aquaponics-integrating fish and plant culture. Oklahoma Cooperative Extension Service
Read, P., & Fernandes, T. (2003). Management of Environmental Impacts of Marine Aquaculture in Europe. Springer.
Rinaldi, M., & Permana, D. (2017). "Urban Aquaculture of Catfish (Clarias sp.) and its Role in Sustainable Food Security." Aquaculture Development Journal, 25(2), 118–124.
Rinehart, L. (2010). Aquaponics—Integration of Hydroponics with Aquaculture. ATTRA. National Sustainable Agriculture Information Service • 1-800-346-9140
Rizal, A., Dhahiyat, Y., Zahidah Andriani, Y., Handaka, A. A., & Sahidin, A. (2017). The economic and social benefits of an aquaponic system for the integrated production of fish and water plants. In IOP Conference Series: Earth and environmental science (Vol. 137, p. 012098). IOP publishing
Roberts, R.J. (Ed.). (2012). Fish Pathology (4th ed.). Wiley-Blackwell: UK.
Rodrigues, A. S., Silva, J. F., Costa, F. H. F., & Lopes, D. L. (2019). "Disease Resistance and Growth Performance of Litopenaeus vannamei in Controlled Aquaculture Systems." Aquaculture Research, 50(2), 347–357.
Romana-Eguia, M.R.R.; Rutaqquio, M.P.; Gutierrez, R.C.; Salayou, N.D. Assesment of tilapia-freshwater prawn co-culture schemes in tanks and lakes-based cages for increased farm production. Sustainability 2021, 13, 13574
Romano, N. (2023). Aquaponic production of strawberries: Influence of boron and media on their mineral and sugar composition. Journal of the World Aquaculture Society, 54, 1277–1288
Roques, S., Deborde, C., Richard, N., Skiba-Cassy, S., Moing, A., & Fauconneau, B. (2020). "Metabolomics and Fish Nutrition: A Review in the Context of Sustainable Feed Development." Reviews in Aquaculture, 12, 261–282. https://doi.org/10.1111/raq.12316
Ruan, X., Zhang, X., & Liu, Y. (2020). "Effects of Urbanization on Aquatic Ecosystems." Environmental Science & Technology, 54(3), 1502–1515.
Samuel-Fitwi, B.; Wuertz, S.; Schroeder, J.P.; Schulz, C. Sustainability assessment tools to support aquaculture development. J. Clean. Prod. 2012, 32, 183–19
Santos, O., Sebasti˜ao, F., Cotrim, L., Vieira, J., Bernardino, R., Vaz, D., & Rodrigues, M. (2023). OC06. Sustainable production of papaya fruit in catfish aquaponic systems. In Book of abstracts of DCE’23 Symposium on Environmental Engineering (p. 31). FEUP Edições
Sarkar, S., Ghosh, P., & Roy, T. (2014). "Effect of Different Dietary Formulations on Growth Performance and Feed Conversion in Cyprinus carpio." Aquaculture Nutrition, 20(4), 507–515.
Savidov, N., Hutchings, E., & Rakocy, J. (2005). Fish and plant production in a recirculating aquaponic system: a new approach to sustainable agriculture in Canada. Pages 209–221. International Conference and Exhibition on Soilless Culture: ICESC 2005 742
Scheffer, M. (2004). Ecology of Shallow Lakes. Springer.
Schmautz, Z., Loeu, F., Liebisch, F., Graber, A., Mathis, A., Griessler Bulc, T., & Junge, R. (2016). Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods. Water, 8(11), 533
Schneider, O., Sereti, V., Eding, E. H., & Verreth, J. A. J. (2006). "Analysis of Nutrient Flows in Integrated Intensive Aquaculture Systems." Aquacultural Engineering, 35(3), 135–151.
Schneider, S., & Niederle, P. A. (2010). Resistance strategies and diversification of rural livelihoods: The construction of autonomy among Brazilian family farmers. The Journal of Peasant Studies, 37(2), 379–405
Silknetter, S.; Creed, R.P.; Brown, B.L.; Frimpong, E.A.; Skelton, J.; Peoples, B.K. Positive biotic interactions in freshwaters: A review and research directive. Freshw. Biol. 2020, 65, 811–832
Simeonidou, M., Paschos, I., Gouva, E., Kolygas, M., & Perdikaris, C. (2012). Performance of a small-scale modular aquaponic system. Aquaculture, Aquarium, Conservation & Legislation, 5(4), 182–188
Singapore Food Agency. (2022). Food Production in Urban Areas. Retrieved from https://www.sfa.gov.sg
Smith, S.A. (2019). Fish Diseases and Medicine. CRC Press: Boca Raton.
Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: integrated fish and plant farming. FAO Fisheries and aquaculture technical paper, (589), I
Sonay, F.D.; Bascinar, N. An investigation on the effects of juvenile rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) monoculture and duo-culture farming in freshwater and seawater on growth performance. Iran. J. Fish. Sci. 2017, 16, 38–49
Sousa, A.M.M.; Rocha, C.M.R.; Gonçalves, M.P. Chapter 24—Agar. In Handbook of Hydrocolloids, 3rd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 731–765
Stickney, R.R. Polyculture in aquaculture. In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A., Eds.; Springer: New York, NY, USA, 2013; pp. 1366–1368
Suárez-Cáceres, G. P., Lobillo-Eguíbar, J., Fernández-Cabanás, V. M., Quevedo-Ruiz, F. J., & Perez-Urrestarazu, L. (2021). Polyculture production of vegetables and red hybrid tilapia for self-consumption by means of micro-scale aquaponic systems. Aquacultural Engineering, 95, 102181
Subramanian, R., & Belal, I. E. (2023). Growth and yield of cucumber and tilapia fish in aquaponics under UAE climatic condition
Sujatmiko, S., Sari, M., & Hariono, M. (2020). "Pengembangan Akuakultur Ikan Bandeng dalam Sistem Kolam Terintegrasi di Daerah Perkotaan." Jurnal Akuakultur Indonesia, 19(1), 45–56. https://doi.org/10.1007/s11756-020-0744-1
Suminto, & Chilmawati, D. (2015). "Pemberian Pakan Buatan Berbentuk Pasta dengan Dosis Protein Berbeda terhadap Pertumbuhan, Efisiensi Pemanfaatan Pakan dan Kelulushidupan Benih Sidat (Anguilla bicolor)." Fishery and Marine Science, Diponegoro University.
Suprayitno, E. (2017). Dasar Pengawetan. Malang: Universitas Brawijaya Press. ISBN: 9786024320836, hlm. 52–63.
Suprayitno, E., & Sulistiyati, T. D. (2017). Metabolisme Protein. Malang: Universitas Brawijaya Press. ISBN: 9786024321611, 108 hlm.
Suprihatin. (2010). Teknologi Fermentasi. UNESA Press. ISBN: 978-602-8915-50-2, 43 hlm.
Suryana, A., Prasetyo, Y., & Gunawan, A. (2018). "Bandeng (Chanos chanos) sebagai Komoditas Akuakultur Berkelanjutan di Perairan Pesisir dan Sistem Perkotaan." Jurnal Ilmu Kelautan, 23(3), 141–150. https://doi.org/10.1016/j.jil.2018.02.012
Suryani, E., & Daryanto, H. (2018). "Pemanfaatan Akuakultur Ikan Lele untuk Peningkatan Pangan Lokal di Wilayah Perkotaan." Jurnal Akuakultur Indonesia, 17(3), 210–220
Tacon, A. G. J., & Metian, M. (2013). "Fish Matters: Importance of Aquatic Foods in Human Nutrition and Global Food Supply." Reviews in Fisheries Science, 21(1), 22-38.
Tacon, A.G.J., & Metian, M. (2008). "Global Overview on the Use of Fish Meal and Fish Oil in Industrially Compounded Aquafeeds: Trends and Future Prospects." Aquaculture, 285(1-4), 146-158.
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). "Heavy Metal Toxicity and the Environment." Molecular, Clinical and Environmental Toxicology, 101, 133-164.
Teixeira Alves, M.; Taylor, N.G.H. Models suggest pathogen risks to wild fish can be mitigated by acquired immunity in freshwater aquaculture systems. Sci. Rep. 2020, 10, 7513
Teixeira Alves, M.; Taylor, N.G.H. Models suggest pathogen risks to wild fish can be mitigated by acquired immunity in freshwater aquaculture systems. Sci. Rep. 2020, 10, 7513
Telfer, T. C., et al. (2013). "The Sustainable Development of Marine Aquaculture." Marine Policy, 40, 123-131. DOI: 10.1016/j.marpol.2013.01.016
Thilsted, S. H. (2021). "Nutrition-sensitive aquaculture: Implications for food security." Food Security, 13(3), 555-570.
Thomas, M.; Lecocq, T.; Abregal, C.; Nahon, S.; Aubin, J.; Jaeger, C.; Wilfart, A.; Schaeffer, L.; Ledoré, Y.; Puillet, L.; et al. The effects of polyculture on behaviour and production of pikeperch in recirculation systems. Aquac. Rep. 2020, 17, 100333
Thomas, M.; Mairesse, G.; Gardeur, J.-N.; Brun-Bellut, J. Concept and Determinism of Quality in Percid Fishes. In Biology and Culture of Percid Fishes: Principles and Practices; Kestemont, P., Dabrowski, K., Summerfelt, R.C., Eds.; Springer: Dordrecht, The Netherlands, 2015
Thorvaldsen, T.; Kongsvik, T.; Holmen, I.M.; Størkersen, K.; Salomonsen, C.; Sandsund, M.; Bjelland, H.V. Occupational health, safety and work environments in Norwegian fish farming—Employee perspective. Aquaculture 2020, 524, 735238
Timmons, M. B. (2005). "Competitive Potential for USA Urban Aquaculture. https://edisadmin.ifas.ufl.edu/publications/FA217/3232111/
Timmons, M. B., & Ebeling, J. M. (2013). Recirculating Aquaculture. Ithaca Publishing Company
Timmons, M. B., & Ebeling, J. M. (2013). Recirculating Aquaculture. Ithaca Publishing Company
Timmons, M. B., & Ebeling, J. M. (2021). Recirculating Aquaculture. Ithaca Publishing.
Timmons, M. B., Guerdat, T., & Vinci, B. J. (2018). Aquaculture Production Systems. Wiley-Blackwell.
Timmons, M.B., & Ebeling, J.M. (2002). Recirculating Aquaculture Systems (4th ed.). Cayuga Aqua Ventures.
Trang, N. T., Tu, V. H., & Kopp, S. W. (2024). Trade-offs between economic and environmental efficiencies in shrimp farming: Implications for sustainable agricultural restructuring in the Vietnamese Mekong Delta. Environment, Development and Sustainability, 26(3), 6677–6701
Troell, M., Naylor, R. L., Metian, M., Beveridge, M., Tyedmers, P. H., Folke, C., & Deutsch, L. (2014). "Does Aquaculture Add Resilience to the Global Food System?" Proceedings of the National Academy of Sciences, 111(37), 13257-13263.
Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.-G. Ecological engineering in aquaculture—Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 2009, 297, 1–9
United Nations. (2019). World Population Prospects 2019. United Nations Department of Economic and Social Affairs.
Valderrama, D.; Hishamunda, N.; Zhou, X. Estimating employment in world aquaculture. FAO Aquac. Newsl. 2010, 45, 24–25
van der Heide, T.; Angelini, C.; de Fouw, J.; Eklöf, J.S. Facultative mutualisms: A double-edged sword for foundation species in the face of anthropogenic global change. Ecol. Evol. 2021, 11, 29–4
van Os, E. A., Gieling, T. H., & Lieth, J. H. (2019). Technical equipment in soilless production systems. In Soilless culture (pp. 587–635). Elsevier
van Rijn, J. (2013). "Waste Treatment in Recirculating Aquaculture Systems." Aquacultural Engineering, 53, 49-56.
Vargas, S., Navarrete, Ó., & Gómez, M. (2022). Automated, technified and traditional aquaponic systems. Ingeniería Solidaria, 18, 1–39. https://doi.org/10.16925/2357-6014.2022.02.02
Vasdravanidis, C., Alvanou, M. V., Lattos, A., Papadopoulos, D. K., Chatzigeorgiou, I., Ravani, M., …., & Giantsis, I. A. (2022). Aquaponics as a promising strategy to mitigate impacts of climate change on rainbow trout culture. Animals, 12(19), 2523
Veenhuizen. (2019). Cities Farming for the Future: Urban Agriculture for Green and Productive Cities. Retrieved from https://www.ruaf.org
Wang, Q.; Cheng, L.; Liu, J.; Li, Z.; Xie, S.; De Silva, S.S. Freshwater aquaculture in PR China: Trends and prospects. Rev. Aquac. 2015, 7, 283–302
Wang, X., Olsen, L. M., Reitan, K. I., & Olsen, Y. (2016). "Discharge of Nutrient Wastes from Salmon Farms: Environmental Effects, Management Practices, and Monitoring." Aquaculture Environment Interactions, 8, 267-284.
Wang, Y., Li, Z., & Lin, Q. (2020). "Role of Probiotics in Aquaculture." Reviews in Aquaculture, 12(1), 66-82.
Watanabe, T. (1982). "Lipid nutrition in fish." Comparative Biochemistry and Physiology, 73(1), 3-15.
Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems. Academic Press.
Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9–19
Woo, P. T. K., & Bruno, D. W. (2011). Fish Diseases and Disorders. CABI Publishing.
Wood, C. M., & Farrell, A. P. (2011). Fish Physiology: Homeostasis and Toxicology of Essential Metals. Academic Press.
World Health Organization. (2020). Water Quality and Health. Retrieved from https://www.who.int
Xianliang, Z.; Fang, X.; Shumin, L.; Xinzhong, L.; Xu, H.; Kiayong, J.; Honglang, H. China Fishery Statistical Yearbook 2018; China Agriculture Press: Beijing, China, 2018; pp. 24–35
Yanong, R. (2010). Fish Health Management Considerations in Recirculating Aquaculture Systems—Part 1: Introduction and General Principles. FA099. Gainesville: University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu/fa09
Yanong, R. (2010). Fish Health Management Considerations in Recirculating Aquaculture Systems—Part 1: Introduction and General Principles. FA099. Gainesville: University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu/fa099
Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges–a review. Journal of Cleaner Production, 228, 1586–1599
Zajdband, A.D. Integrated Agri-Aquaculture Systems. In Genetics, Biofuels and Local Farming Systems; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 87–127
Zhang, Q., & Li, H. (2022). "Microbial Communities in Aquaculture Water." Aquaculture Research, 53(5), 2340-2350.
Zhang, Y. (2021). "Integration of urban aquaculture and green spaces for sustainable urban development." Urban Forestry & Urban Greening, 58, 126942.
Zhao, W., Liu, C., Li, D., & Zheng, Y. (2024). "Energy-saving techniques in urban aquaponics farms by optimizing equipment operating scheme." Aquaculture, 587, 740873. https://doi.org/10.1016/j.aquaculture.2024.740873
Zhu, S., & Chen, S. (2017). Aquaculture Water Treatment Technologies and Systems. Elsevier.
Zimmermann, S.; Nair, C.; New, M. Chapter 11—Grow-Out Systems—Polyculture and Integrated Culture. In Freshwater Prawns: Biology and Farming; Wiley-Blackwell: Oxford, UK, 2009.