KOPEPODA: Mikroorganisme untuk Akuakultur Berkelanjutan
Kata Kunci:
KOPEPODA: Mikroorganisme untuk Akuakultur BerkelanjutanAbstrak
Buku "KOPEPODA: Mikroorganisme untuk Akuakultur Berkelanjutan" merupakan karya ilmiah yang membahas secara komprehensif peran dan potensi kopepoda sebagai pakan alami dalam industri akuakultur. Kopepoda, kelompok kecil dalam zooplankton, dikenal memiliki nilai nutrisi tinggi yang penting bagi pertumbuhan dan kesehatan larva ikan dan udang. Buku ini mengupas tuntas aspek biologi, ekologi, dan teknologi budidaya kopepoda, serta bagaimana kopepoda dapat dimanfaatkan untuk meningkatkan efisiensi dan keberlanjutan dalam produksi akuakultur. Dalam buku ini, pembaca akan menemukan ulasan mendalam tentang karakteristik kopepoda, termasuk siklus hidup, kandungan nutrisi, serta teknik pengelolaan dan budidaya yang efektif. Penulis juga menguraikan aplikasi praktis kopepoda sebagai pakan larva dalam berbagai spesies akuakultur, dengan menyoroti studi kasus dan inovasi terkini yang mendukung perkembangan teknologi akuakultur modern. Buku ini ditujukan bagi mahasiswa, peneliti, praktisi akuakultur, serta siapa saja yang memiliki ketertarikan terhadap pemanfaatan sumber daya laut yang berkelanjutan. Dengan pendekatan yang informatif dan berbasis data ilmiah, akan memberikan kontribusi signifikan bagi pengembangan ilmu dan praktik akuakultur di masa depan
Referensi
Aliah, R. S., Kusmiyati, & Yaniharto, D. (2010). Pemanfaatan Copepoda Oithona sp. sebagai Pakan Hidup Larva Ikan Kerapu. Jurnal Sains Dan Teknologi Indonesia, 12(1), 45–52.
Alver, M. O., Storøy, W., Bardal, T., Overrein, I., Onsøyen, M. K., Tennøy, T., & Øie, G. (2011). Automatic Measurement of Acartia tonsa Nauplii Density, and Estimation of Stage Distribution. Aquaculture, 313(2011), 100–106. https://doi.org/10.1016/j.aquaculture.2011.01.033.
Auel, H., & Verheye, H. M. (2007). Hypoxia Tolerance in the Copepod Calanoides Carinatus and the Effect of an Intermediate Oxygen Minimum Layer on Copepod Vertical Distribution in the Northern Benguela Current Upwelling System and the Angola – Benguela Front. Journal of Experimental Marine Biology and Ecology, 352(2007), 234–243. https://doi.org/10.1016/j.jembe.2007.07.020.
Bai, Z., Wang, N., & Wang, M. (2021). Effects of Microplastics on Marine Copepods. Ecotoxicology and Environmental Safety, 217(2021), 1–7. https://doi.org/10.1016/j.ecoenv.2021.112243.
Banas, N. S., Møller, E. F., Nielsen, T. G., & Eisner, L. B. (2016). Copepod Life Strategy and Population Viability in Response to Prey Timing and Temperature: Testing a New Model Across Latitude, Time, and the Size Spectrum. Frontiers in Marine Science, 1–21. https://doi.org/10.3389/fmars.2016.00225.
Baranyl, F., Sadour, M., & Hansen, B. W. (2020). Copepods as Live Feed in Aquaculture. Roskilde University.
Barroso, M. V, Carvalho, C. V. A. De, Antoniassi, R., & Cerqueira, V. R. (2013). Use of the Copepod Acartia tonsa as the First Live Food for Larvae of the Fat Snook Centropomus Parallelus. Aquaculture, 388–391(2013), 153–158. https://doi.org/10.1016/j.aquaculture.2013.01.022
Bass, D., Rueckert, S., Stern, R., Cleary, A. C., Taylor, J. D., Ward, G. M., & Huys, R. (2021). Parasites, Pathogens, and Other Symbionts of Copepods. Trends in Parasitology, 37(10), 875–889. https://doi.org/10.1016/j.pt.2021.05.006
Burris, Z. P., & Dam, H. G. (2015). Spermatophore Production as a Function of Food Abundance and Age in the Calanoid Copepods, Acartia tonsa and Acartia hudsonica. Marine Biology, 1–16. https://doi.org/10.1007/s00227-015-2628-6.
Buskey, E. J. (1998). Components of Mating Behavior in Planktonic Copepods. Journal of Marine Systems, 15(1998), 13–21. https://doi.org/10.1016/S0924-7963(97)00045-6.
Camus, T., & Zeng, C. (2009). The Effects of Stocking Density on Egg Production and Hatching Success, Cannibalism Rate, Sex Ratio and Population Growth of the Tropical Calanoid Copepod Acartia sinjiensis. Aquaculture, 287(1–2), 145–151. https://doi.org/10.1016/j.aquaculture.2008.10.005.
Cass, C. J., & Daly, K. L. (2014). Eucalanoid Copepod Metabolic Rates in the Oxygen Minimum Zone of the Eastern Tropical North Pacific: Effects of Oxygen and Temperature. Deep-Sea Research Part I, 94(2014), 137–149. https://doi.org/10.1016/j.dsr.2014.09.003.
Chesney, E. J. (2005). Copepods as Live Prey: A Review of Factors That Influence the Feeding Success of Marine Fish Larvae. In C.-S. Lee, P. J.O’Bryen, & N. H. Marcus (Eds.), Copepods in Aquaculture (pp. 133–150). Blackwell Publishing. https://doi.org/10.1002/9780470277522.ch11.
Choi, K. H., & Kimmerer, W. J. (2008). Mate Limitation in an Estuarine Population of Copepods. Limnology and Oceanography, 53(4), 1656–1664. https://doi.org/10.4319/lo.2008.53.4.1656.
Chullasorn, S., Kangtia, P., Pinkaew, K., & Ferrari, F. D. (2007). Apocyclops Ramkhamhaengi sp. nov. (Copepoda: Cyclopoida) in a Culture Originating from Brackish Water of Chang Island, Trat Province, Thailand. Departement of Biology, Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok 10240, Thailand, 47(3), 1–24.
Conover, R. J., & Huntley, M. (1991). Copepods in ice-covered seas-Distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. Journal of Marine Systems, 2(1–2), 1–41. https://doi.org/10.1016/0924-7963(91)90011-I
Constable, A. J., Melbourne-Thomas, J. E., Stuartp.Corney, Arrigo, K. R. ., Barbraud, C., Barnes, D. K. A., Indoff, N. L. B., Ipw.Boyd, P. L., Kabrandt, A. I., Costa, D. P. ., Davidson, A. T., Ducklow, H. W., Emmerson, L., Fukuchi, M. I. T., Iangutt, J., Indell, M. ., Leene.Hofmann, E. I., Hosie, G., Iida, T., … Ziegler, P. (2014). Climate Change and Southern Ocean ecosystems I : How Changes in Physical Habitats Directly Affect Marine Biota. Global Change Biology, 1–23. https://doi.org/10.1111/gcb.12623
Darsiani, D., Setiawati, M., Jusadi, D., Suprayudi, M. A., & Laining, A. (2023). β-carotene effect on golden rabbitfish (Siganus guttatus) larvae. AACL Bioflux, 16(5), 2698–2707.
Darsiani, Karim, M. Y., & Trijuno, D. D. (2017). Response of Osmotic and Population Growth of Copepoda Cyclopoid Oithona sp. at Various Salinity. Jurnal Saintek Peternakan Dan Perikanan, 1(1), 54–65.
Deschamps, M. M., Boersma, M., Meunier, C. L., Kirstein, I. V., Wiltshire, K. H., & Di Pane, J. (2023). Major Shift in the Copepod Functional Community of the Southern North Sea and Potential Environmental Drivers. ICES Journal of Marine Science, 1–13. https://doi.org/10.1093/icesjms/fsad160.
Dexter, D. M. (1993). Salinity Tolerance of The Copepod Apocyclops dengizicus (Lepeschkin, 1900), a Key Food Chain Organism in the Salton Sea, California. Hydrobiologia, 267, 203–209.
Djeghri, N., Atkinson, A., Fileman, E. S., Harmer, R. A., Widdicombe, C. E., McEvoy, A. J., Cornwell, L., & Mayor, D. J. (2019). Reprint of: High Prey-Predator Size Ratios and Unselective Feeding in Copepods: A Seasonal Comparison of Five Species with Contrasting Feeding Modes. Progress in Oceanography, 177, 1–12. https://doi.org/10.1016/j.pocean.2018.11.005.
Drillet, G., Goetze, E., Jepsen, P. M., Højgaard, J. K., & Hansen, B. W. (2008). Strain-Specific Vital Rates in Four Acartia tonsa Cultures, I: Strain Origin, Genetic Differentiation and Egg Survivorship. Aquaculture, 280(2008), 109–116. https://doi.org/10.1016/j.aquaculture.2008.04.005.
Drira, Z., Kmiha-Megdiche, S., Sahnoun, H., Pagano, M., Tedetti, M., & Ayadi, H. (2017). Water Quality Affects the Structure of Copepod Assemblages Along the Sfax Southern Coast (Tunisia, Southern Mediterranean Sea). Marine and Freshwater Research, 69(2), 220–231. https://doi.org/10.1071/MF17133.
Dur, G., Souissi, S., Schmitt, F. G., Cheng, S. H., & Hwang, J. S. (2012). Sex Ratio and Mating Behavior in the Calanoid Copepod Pseudodiaptomus annandalei. Zoological Studies, 51(5), 589–597.
Dvoretsky, V. G. (2012). Seasonal Mortality Rates of Oithona similis (Cyclopoida) in a Large Arctic fjord. Polar Science, 6(3–4), 263–269. https://doi.org/10.1016/j.polar.2012.09.001.
Ershova, E. A., & Kosobokova, K. N. (2012). Morphology of Genital System and Reproductive Biology of the Arctic Calanoid Copepod Metridia longa. Biology Bulletin, 39(8), 676–683. https://doi.org/10.1134/S1062359012080043.
Evjemo, J. O., Reitan, K. I., & Olsen, Y. (2003). Copepods as Live Food Organisms in the Larval Rearing of Halibut Larvae (Hippoglossus hippoglossus L.) with Special Emphasis on the Nutritional Value. Aquaculture, 227(2003), 191–210. https://doi.org/10.1016/S0044-8486(03)00503-9.
FAO Fisheries Technical Paper. (1996). Manual on the Production and use of Live Food for Aquaculture (P. Lavens & P. Sorgeloos (Eds.)).
Feng, J., Mazzei, M., Di Gregorio, S., Niccolini, L., Vitiello, V., Ye, Y., Guo, B., Yan, X., & Buttino, I. (2023). Marine Copepods as a Microbiome Hotspot: Revealing Their Interactions and Biotechnological Applications. Water (Switzerland), 15(24), 1–21. https://doi.org/10.3390/w15244203.
Frangoulis, C., Christou, E. D., & Hecq, J. H. (2005). Comparison of Marine Copepod Outfluxes: Nature, Rate, Fate and Role in the Carbon and Nitrogen Cycles. 47, 253–309.
Gokul, T., Ramesh, K., Veeramanikandan, V., Arun, A., Balaji, P., & Faggio, C. (2023). Impact of Particulate Pollution on Aquatic Invertebrates. Environmental Toxicology and Pharmacology, 100(2023), 1–7. https://doi.org/10.1016/j.etap.2023.104146.
Goncalves, A. M. M., Pardal, M. A., Marques, S. C., Mendes, S., Fernández-gómez, M. J., Galindo-Villardon, M. P., & Azeiteiro, U. M. (2012). Estuarine, Coastal and Shelf Science Diel Vertical Behavior of Copepoda Community (Naupliar, Copepodites and Adults) at the Boundary of a Temperate Estuary and Coastal Waters. Estuarine, Coastal and Shelf Science, 98(2012), 16–30. https://doi.org/10.1016/j.ecss.2011.11.018.
Gusmão, L. F. M., & McKinnon, A. D. (2009). The Effect of Food Type and Quantity on Egg Production and Nucleic Acid Content of Acartia sinjiensis. Aquaculture, 296(2009), 71–80. https://doi.org/10.1016/j.aquaculture.2009.08.015.
Gutierrez, M. F., Gagneten, A. M., & Paggi, J. C. (2010). Copper and Chromium Alter Life Cycle Variables and the Equiproportional Development of the Freshwater Copepod Notodiaptomus conifer (SARS). Water Air Soil Pollut, 213, 275–286. https://doi.org/10.1007/s11270-010-0383-3.
Hammervold, S. H., Glud, R. N., Evjemo, J. O., Hagemann, A., & Hansen, B. W. (2015). Short Communication A new Large Egg type From the Marine Live Feed Calanoid Copepod Acartia tonsa (Dana) — Perspectives for Selective Breeding of Designer Feed for Hatcheries. Aquaculture, 436(2015), 114–120. https://doi.org/10.1016/j.aquaculture.2014.11.003.
Hansen, B. H., Altin, D., Rørvik, S. F., Øverjordet, I. B., Olsen, A. J., & Nordtug, T. (2011). Comparative Study on Acute Effects of Water Accommodated Fractions of an Artificially Weathered Crude Oil on Calanus finmarchicus and Calanus glacialis (Crustacea : Copepoda). Science of the Total Environment, 409(2011), 704–709. https://doi.org/10.1016/j.scitotenv.2010.10.035.
Hansen, M. H. (2011). Effects of Feeding with Copepod Nauplii (Acartia tonsa) Compared to Rotifers (Brachionus ibericus, Cayman) on Quality Parameters in Atlantic cod (Gadus morhua) Larvae (pp. 1–91). Norwegian University of Science and Technology.
Hedayati, A., Pouladi, M., Vazirizadeh, A., Qadermarzi, A., & Mehdipour, N. (2017). Seasonal Variations in Abundance and Diversity of Copepods in Mond River estuary, Bushehr, Persian Gulf. Biodiversitas, 18(2), 447–452. https://doi.org/10.13057/biodiv/d180201
Helland, S., Terjesen, B. F., & Berg, L. (2003). Free Amino Acid and Protein Content in the Planktonic Copepod Temora longicornis Compared to Artemia franciscana. Aquaculture, 215(2003), 213–228.
Hetherington, E. D., Damian-serrano, A., Haddock, S. H. D., Dunn, C. W., & Choy, C. A. (2022). Integrating Siphonophores into Marine Food-Web Ecology. Limnology and Oceanography, 7, 81–95. https://doi.org/10.1002/lol2.10235
Heuschele, J., Eliassen, S., & Kiørboe, T. (2013). Optimal Mate Choice Patterns in Pelagic Copepods. Oecologia, 172(2), 399–408. https://doi.org/10.1007/s00442-012-2516-4
Hidayani, S., Apriadi, T., & Kurniawan, D. (2018). Copepoda sebagai Indikator Keberadaan Kuda Laut (Hippocampus sp.) di Perairan Desa Sebong Pereh, Bintan. Jurnal Akuatiklestari, 1(2), 32–37.
Huys, R. (2016). Copepoda. In Atlas of Crustacean Larvae (pp. 1–24).
Hwang, J. S., & Strickler, R. (2001). Can Copepods Differentiate Prey from Predator Hydromechanically? Zoological Studies, 40(1), 1–6.
Ianora, A., Miralto, A., & Halsband-Lenk, C. (2007). Reproduction, Hatching Success, and Early Naupliar Survival in Centropages typicus. Progress in Oceanography, 72(2007), 195–213. https://doi.org/10.1016/j.pocean.2007.01.009.
Ikeda, T., Yamaguchi, A., & Matsuishi, T. (2006). Chemical Composition and Energy Content of Deep-Sea Calanoid Copepods in the Western North Pacific Ocean. Deep-Sea Research, 53(2006), 1791–1809. https://doi.org/10.1016/j.dsr.2006.08.002.
Ivanenko, V. N. (2016). Symbiotic copepods Associated with Invertebrates at St. Eustatius (Issue September). Naturalis Biodiversity Center. https://doi.org/10.13140/RG.2.2.21113.26721
Kasturirangan, I. R. (1963). A Key For the Identification of the More Common Planktonic Copepoda of Indian Coastal Waters (N. K. Panikkar (Ed.); 2nd ed.). Council of Scientific and Industrial Research.
Kiorboe, T. (2011). How Zooplankton Feed: Mechanisms, Traits and Trade-offs. Biol. Rev., 86, 311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x.
Kiorboe, T. (2013). Attack or Attacked: The Sensory and Fluid Mechanical Constraints of Copepods’ Predator-Prey Interactions. Integrative and Comparative Biology, 1–11. https://doi.org/10.1093/icb/ict021.
Kiørboe, T., & Visser, A. W. (1999). Predator and prey perception in copepods due to hydromechanical signals. Marine Ecology Progress Series, 179, 81–95. https://doi.org/10.3354/meps179081.
Kline, M. D., Callan, C. K., & Laidley, W. (2014). Advances in Intensive Copepod Production Technology. Global Aquaculture Advocate, January-February, 1–6.
Kramer, A. M., Sarnelle, O., & Yen, J. (2011). The Effect of Mating Behavior and Temperature Variation on the Critical Population Density of a Freshwater Copepod. Limnology and Oceanography, 56(2), 707–715. https://doi.org/10.4319/lo.2011.56.2.0707
Ladhar, C., Ayadi, H., Denis, F., Tastard, E., & Sellami, I. (2014). The Effect of Environmental Factors on the Fatty Acid Composition of Copepods and Artemia in the Sfax Solar Saltern (Tunisia). Biochemical Systematics and Ecology, 56(2014), 237–245. https://doi.org/10.1016/j.bse.2014.06.005
Lance, J. (1965). Respiration and Osmotic Behaviour of the Copepod Acartia tonsa in Diluted Sea Water. Comp. Biochem. Physiol, 14, 155–165.
Lapesa, S., Snell, T. W., Fields, D. M., & Serra, M. (2002). Predatory Interactions Between a Cyclopoid Copepod and Three Sibling Rotifer Species. Freshwater Biology, 47, 1685–1695. https://doi.org/10.1046/j.1365-2427.2002.00926.x.
Lee, C.-S., O’Bryen, P. J., & Marcus, N. H. (Eds.). (2005). Copepods in Aquaculture (1st ed.). Blackwell Publishing Asia.
Lee, D. J., & Lee, W. (2019). Arthropoda : Copepoda. In Arthropoda : Copepoda (Fourth Edi, pp. 761–780). Elsevier. https://doi.org/10.1016/B978-0-12-385024-9.00020-4
Lee, K. W., Park, H. G., Lee, S.-M., & Kang, H.-K. (2006). Effects of Diets on The Growth of The Brackish Water Cyclopoid Copepod Paracyclopina nana Smirnov. Aquaculture, 256(2006), 346–353. https://doi.org/10.1016/j.aquaculture.2006.01.015.
Marcus, N. H., & Wilcox, J. A. (2007). A Guide to the Meso-Scale Production of the Copepod Acartia tonsa. Florida State University.
Matias-peralta, H. M. (2004). Biology and Culture of a Tropical Harpacticoid Copepod, Nitocra affinis californica lang (Issue October). Universiti Putra Malaysia.
Mauchline, J. (1998). Advances in Marine Biology; The Biology of Calanoid Copepods (J. H. S. Balxter, A. J. Southward, & P. A. Tyler (Eds.)). Academic Press.
McGinty, N., Barton, A. D., Finkel, Z. V., Johns, D. G., & Irwin, A. J. (2021). Niche Conservation in Copepods Between Ocean Basins. Ecography, 44(11), 1653–1664. https://doi.org/10.1111/ecog.05690
Meeren, T. Van Der, Karlsen, Ø., Liebig, P. L., & Mangor-jensen, A. (2014). Copepod Production in a Saltwater Pond System : A Reliable Method for Achievement of Natural Prey in Start-Feeding of Marine Fish Larvae. Aquacultural Engineering, 62(2014), 17–27. https://doi.org/10.1016/j.aquaeng.2014.07.003
Michalec, L., Souissi, S., Dur, G., Mahjoub, M.-S., Schmitt, F. G., & Hwang, J.-S. (2010). Differences in Behavioral Responses of Eurytemora affinis (Copepoda, Calanoida) Reproductive Stages to Salinity Variations. Journal of Plankton Research, 32(6), 805–813. https://doi.org/10.1093/plankt/fbq006
Miller, C. A., & Roman, M. R. (2008). Effects of Food Nitrogen Content and Concentration on the Forms of Nitrogen Excreted by the Calanoid Copepod, Acartia tonsa. Journal of Experimental Marine Biology and Ecology, 359(2008), 11–17. https://doi.org/10.1016/j.jembe.2008.02.016
Morales, C. E. (1987). Carbon and Nitrogen Content of Copepod Faecal Pellets: Effect of Food Concentration and Feeding Behavior. Marine Ecology Progress Series, 36, 107–114. https://doi.org/10.3354/meps036107.
Ndour, I., Ndiaye, I., Clotilde-Bâ, F.-L., & Diadhiou, H. D. (2019). Copepod Communities’ Structure in an Upwelling Tropical Marine Ecosystem in West Africa. AACL Bioflux, 12(4), 1216–1226.
Olivotto, I., Tokle, N. E., Nozzi, V., Cossignani, L., & Carnevali, O. (2010). Preserved Copepods as a New Technology for the Marine Ornamental Fish Aquaculture: a Feeding Study. Aquaculture, 308(2010), 124–131. https://doi.org/10.1016/j.aquaculture.2010.08.033.
Pinho, G. L. L., Pedroso, M. S., Rodrigues, S. C., Souza, S. S. de, & Bianchini, A. (2007). Physiological Effects of Copper in the Euryhaline Copepod Acartia tonsa: Waterborne versus Waterborne Plus Dietborne Exposure. Aquatic Toxicology, 84(2007), 62–70. https://doi.org/10.1016/j.aquatox.2007.06.001.
Powers, M. J., Wilson, A. E., Heine, K. B., & Hill, G. E. (2020). The Relative Importance of Various Mating Criteria in Copepods. Journal of Plankton Research, 42(1), 19–30. https://doi.org/10.1093/plankt/fbz075.
Purnama, M. F., Suprihanto, A., & Hadiyanto. (2025). Penilaian Kualitas Lingkungan Perairan Berbasis Bioindikator (Gastropoda) di Area Dampak Pertambangan Nikel Kecamatan. Jurnal Profesi Insinyur Indonesia, 2(6), 359–370.
Rasdi, N. W., & Qin, J. G. (2016). Improvement of Copepod Nutritional Quality as Live Food for Aquaculture: a Review. Aquaculture Research, 47(1), 1–20. https://doi.org/10.1111/are.12471
Redjeki, S. (2007). Pemberian Copepoda Tunggal dan Kombinasi Sebagai Pakan Alami Kuda Laut (Hippocampus kuda). Ilmu Kelautan, 12(1), 1–5.
Reid, J. W., Bayly, I. A. E., Pesce, G. L., Rayner, N. A., Reddy, Y. R., Rocha, C. E. F., Suarez-Morales, E., & Ueda, H. (2001). Conservation of Continental Copepod Crustaceans. In Kluwer Academic/ Plenum Publishers (pp. 1–9).
Ren, Y., Yin, J., Tan, Y., Liu, H., Yu, L., & Li, K. (2021). Monsoon-Driven Seasonal and Spatial Distribution of the Copepod Community Along the Northwest Continental Shelf of the South China Sea. Journal of Marine Systems, 218(2021), 1–11. https://doi.org/10.1016/j.jmarsys.2021.103529.
Requena, M. O. (2020). Requena_tesis.pdf. University of Barcelona (UB).
Röthig, T., Trevathan-, S. M., Voolstra, C. R., Ross, C., Chaffron, S., Durack, P. J., Warmuth, L. M., & Sweet, M. (2023). Human- Induced Salinity Changes Impact Marine Organisms and Ecosystems. Global Change Biology, 17, 4731–4749. https://doi.org/10.1111/gcb.16859.
Seo, M. H., Kim, H. J., Lee, S. J., Kim, S. Y., Yoon, Y. H., Han, K. H., Choi, S. D., Kwak, M. T., Jeong, M. K., & Soh, H. Y. (2021). Environmental Factors Affecting the Spatiotemporal Distribution of Copepods in a Small Mesotidal Inlet and Estuary. Diversity, 13(389), 1–23. https://doi.org/10.3390/d13080389.
Skjoldal, H. R., & Aarflot, J. M. (2023). Abundance and Biomass of Copepods and Cladocerans in Atlantic and Arctic Domains of the Barents Sea Ecosystem. Journal of Plankton Research, 45, 870–884.
Sosnowski, S. L., Germond, D. J., & Gentile, J. H. (1979). The Effect of Nutrition on the Response of Field Populations of the Calanoid Copepod Acartia tonsa to Copper. Water Research, 13, 449–452.
Souissi, A., Souissi, S., & Devreker, D. (2010). Occurence of In.tersexuality in a Laboratory Culture of the Copepod Eurytemora affinis from the Seine estuary (France). Mar Biol, 157(2010), 851–861. https://doi.org/10.1007/s00227-009-1368-x.
Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the Ocean Carbon Cycle. Annu. Rev. Mar. Sci., 9, 413–446. https://doi.org/10.1146/annurev-marine-010814-015924.
Sullivan, B. K., & Ritacco, P. J. (1985). Ammonia Toxicity to Larval Copepods in Eutrophic Marine Ecosystems: A Comparison of Result from Bioassays and Enclosed Experimental Ecosystems. Aquatic Toxicology, 7(1985), 205–217.
Sutomo. (2004). Pengaruh Salinitas dan Jenis Mikroalga (Chaetoceros gracilis) dan Nannochloropsis oculata) terhadap Perkembangan Nauplii dan Perkembangan Kopepoda Tigriopus brevicornis. Oseanologi dan Limnologi Di Indonesia, 38, 47–67.
Sutomo. (2007). Pertumbuhan Populasi Kopepoda, Apocyclops borneoensis pada Salinitas dan Fotoperoide yang Berbeda. Oseanologi dan Limnologi Di Indonesia, 33, 27–46.
Svetlichny, L., & Hubareva, E. (2014). Salinity Tolerance of Alien Copepods Acartia tonsa and Oithona davisae in the Black Sea. Journal of Experimental Marine Biology and Ecology, 461(2014), 201–208. https://doi.org/10.1016/j.jembe.2014.08.012.
Svetlichny, L., Khanaychenko, A., Hubareva, E., & Aganesova, L. (2012). Partitioning of Respiratory Energy and Environmental Tolerance in the Copepods Calanipeda aquaedulcis and Arctodiaptomus salinus. Estuarine, Coastal and Shelf Science, 114(2012), 199–207. https://doi.org/10.1016/j.ecss.2012.07.023.
Swadling, K. M., & Marcus, N. H. (1994). Selectivity in the Natural Diets of Acartia tonsa Dana (Copepoda: Calanoida): Comparison of Juveniles and Adults. Journal of Experimental Marine Biology and Ecology, 181(1994), 91–103.
Takahashi, T., & Uchiyama, I. (2007). Morphology of the Naupliar Stages of Some Oithona species (Copepoda: Cyclopoida) Occurring in Toyama Bay, Southern Japan Sea. Plankton Bentos Res, 2(1), 12–27.
Titelman, J., Varpe, Ø., Eliassen, S., & Fiksen, Ø. (2007). Copepod mating: Chance or Choice? Journal of Plankton Research, 29(12), 1023–1030. https://doi.org/10.1093/plankt/fbm076.
Trujillo-Ortiz, A. (1986). Life Cycle of the Marine Calanoid Copepod Acartia californiensis Trinast Reared Under Laboratory Conditions. CalCOFI Rep, 27, 188–204.
Turner, J. T. (2004). The Importance of Small Planktonic Copepods and Their Roles in Pelagic Marine Food Webs. Zoological Studies, 43(2), 255–266.
Turner, J. T., Levinsen, H., Nielsen, T. G., & Hansen, B. W. (2001). Zooplankton Feeding Ecology: Grazing on Phytoplankton and Predation on Protozoans by Copepod and Barnacle Nauplii in Disko Bay, West Greenland. Marine Ecology Progress Series, 22, 209–219. https://doi.org/10.3354/meps221209.
Uriarte, I., & Villate, F. (2005). Differences in the Abundance and Distribution of Copepods in Two Estuaries of the Basque coast (Bay of Biscay) in Relation to Pollution. Journal of Plankton Research, 27(9), 863–874. https://doi.org/10.1093/plankt/fbi059.
Uye, S., & Liang, D. (1998). Copepods attain High Abundance, Biomass and Production in the Absence of Large Predators but Suffer Cannibalistic Loss. Journal of Marine Systems, 15(1998), 495–501. https://doi.org/10.1016/j.jmarsys.2006.05.014.
Vakati, V., Fuentes-Reinés, J. M., Wang, P., Wang, J., & Dodsworth, S. (2023). A summary of Copepoda: Synthesis, Trends, and Ecological Impacts. Journal of Oceanology and Limnology, 41(3), 1050–1072. https://doi.org/10.1007/s00343-022-1309-9.
Van Duren, L. A., & Videler, J. J. (1996). The Trade-off Between Feeding, Mate Seeking and Predator Avoidance in Copepods: Behavioural Responses to Chemical Cues. Journal of Plankton Research, 18(5), 805–818. https://doi.org/10.1093/plankt/18.5.805.
Williamson, C E, & Reid, J. W. (2009). External Morphology and Behavior of Copepods. Elsevier Inc. All Rights Reserved, 633–642.
Williamson, Craig E. (1983). Behavioral Interactions Between a Cyclopoid Copepod Predator and its Prey. Journal of Plankton Research, 5(5), 701–711. https://doi.org/10.1093/plankt/5.5.701.
Williamson, Craig E, & Reid, J. W. (2001). Copepoda. In Ecology and Classification of North American Freshwater Invertebrates: 2nd Edition (pp. 915–954).
Witty, L. M. (2004). Practical Guide to Identifying Freshwater Crustacean Zooplankton (Cooperativ). Departement of Biology, Laurentian University.
Wu, C., Hwang, J., & Yang, J. (2004). Diets of Three Copepods (Poecilostomatoida) in the Southern Taiwan Strait. Zoological Studies, 43(2), 388–392.
Yufera, M. (2011). Larval Fish Nutrition. In G. J. Holt (Ed.), Feeds and Feeding (pp. 285–305). John Wiley & Sons, Inc.
Zeng, C., Shao, L., Ricketts, A., & Moorhead, J. (2018). The Importance of Copepods as Live Feed for Larval Rearing of the Green Mandarin Fish Synchiropus splendidus. Aquaculture, 491(2018), 65–71. https://doi.org/10.1016/j.aquaculture.2018.03.011.